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We have reported palladium-catalyzed allyl transfer from ho-
moallyl alcohols to aryl halides through carbon-carbon bond
cleavage.1,2 The allyl transfer proceeds in a regio- and stereospecific
manner, reflecting the structure of homoallyl alcohols used. Here
we report regiospecific and stereoselective allyl transfer reactions
for the synthesis of aryl-substituted (E)-1- or 2-alkenylsilanes from
silyl-substituted homoallyl alcohols. Alkenylsilanes are indispen-
sable reagents in modern organic synthesis.3 Developing new
methods for highly selective synthesis of vinyl- and allylsilanes,
including optically active ones, is thus still quite important.4

Treatment of 1-bromonaphthalene (2a) with 1a, containing an
allylic silane moiety, in the presence of K2CO3 under Pd(OAc)2/
P(cHex)3 catalysis provided vinylsilane3a′ in good yield with
moderateE selectivity (Scheme 1). The reaction with1b having a
bulkier tBuMe2Si group proceeded to yield3a with excellent
selectivity ofE/Z ) 95:5. The improvement of the stereoselectivity
would originate from the stronger preference of thetBuMe2Si group
being at the pseudoequatorial position in the transition state of the
retroallylation. It is worth noting that only one silyl group at the
allylic position can be a decisive factor in determining the
stereoselectivity, whereas tedious preparation of diastereomerically
pure and differently 1,1,2-trisubstituted homoallyl alcohols was
essential to attain highE selectivity in the previous report.1

The scope of aryl halides is wide enough to afford a variety of
(E)-3-aryl-1-propenylsilanes in excellent yields (Table 1).5,6 Steri-
cally demanding (entry 1), electron-deficient (entries 2-5), and
electron-rich (entry 6) aryl bromides participated in the reaction.
The use of P(cHex)3 as a ligand allowed us to use aryl chlorides as
substrates (entries 7 and 8).

We then focused on homoallyl alcohol4a, containing a (Z)-1-
alkenylsilane moiety. The reactions of4a with aryl bromides in
the presence of Cs2CO3 under Pd(OAc)2/PAr3 catalysis provided
1-aryl-2-propenylsilanes in high yields (Table 2,5 entries 1-6). P(c-
Hex)Ph2 was exceptionally essential to attain high yield when
electron-rich aryl bromide2g was used (entry 7).

Interestingly, silylated homoallyl alcohols4b-d having one
methyl group at the allylic position were converted to (E)-1-aryl-
2-butenylsilanes stereoselectively (entries 8-16). Fortunately the
allyl transfer reaction to 1-bromonaphthalene2a always provided
the E isomers exclusively (entries 8, 10, and 15). The exclusive
formation of theE isomers would result from the steric factor of
the 1-naphthyl group on palladium in the transition state of the
retroallylation. The Me3Si, tBuMe2Si, and Me2PhSi groups were
compatible under the reaction conditions. The bulkiness of the silyl
groups had little influence on stereoselectivity (entries 9 vs 11 and
13 vs 16). On the other hand, when the larger substituent,nBu,
was introduced at the allylic position, theE selectivity of the
reaction was excellent (entry 13 vs 17). TheE selective formation

can be explained in a fashion similar to that in Scheme 1 (Scheme
2).

The reactions of optically active (S)-4d (96% ee) with 2-sub-
stituted aryl bromides resulted in excellent chirality transfer to (E)-
1-aryl-2-butenylsilanes5 (Table 35). The enantiomeric excesses of
the products were indirectly determined after converting allylsilanes
5 to the corresponding 1-aryl-1-butanols6. The conversion consisted
of hydrogenation with hydrazine, acid-mediated conversion of the
phenyl group on silicon to a trifluoroacetoxy group, and Tamao-
Fleming oxidation with retention of configuration of the chiral
carbon.7

The excellent chirality transfer is rationalized as follows (Scheme
3). Comparing7a and7b, two possible chairlike transition states
of the retroallylation step,7awould be the more preferable because
the methyl group at the allylic position occupies the pseudoequa-
torial position. The palladium center would approach theRe face
of the alkene moiety, which leads to the formation of8a having

Scheme 1

Table 1. Synthesis of (E)-3-Aryl-1-propenylsilanes 3a

entry Ar−X 2 3 yield (%) E/Z

1 2,6-Me2C6H3Br 2b 3b 92 93:7
2 4-CF3C6H4Br 2c 3c 75 96:4
3 4-CH3COC6H4Br 2d 3d 89 95:5
4 4-HCOC6H4Br 2e 3e 87 96:4
5 4-EtOCOC6H4Br 2f 3f 97 95:5
6 4-CH3OC6H4Br 2g 3g 92 94:6
7 4-EtOCOC6H4Cl 2f-Cl 3f 89 97:3
8 4-CH3OC6H4Cl 2g-Cl 3g 92 95:5

a The reaction conditions are the same as shown in Scheme 1.
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E,Rconfiguration. Immediate reductive elimination from8awithout
loss of the chirality provides (E,S)-5.

The reaction of optically active (S)-4d (96% ee) with bromoben-
zene provided a mixture of (E)- and (Z)-5kd in a ratio of 93:7
(Scheme 4). Since we could not determine the enantiomeric excess

of each isomer, the mixture was converted to 1-phenylbutanol
according to the procedure described in Table 3. The enantiomeric
excess of6kd was 85% ee. The ee value of6kd strongly supports
that complete chirality transfer to both (E)- and (Z)-5kd took place
according to the mechanism shown in Scheme 3.

The present method provides a new access to (arylalkenyl)silanes,
including optically pure allylic silanes, from silyl-substituted
homoallyl alcohol and aryl halide.
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Table 2. Synthesis of 1-Aryl-2-alkenylsilanes

entry 2 Si R 4 conditionsa 5 yield (%)b

1 2a tBuMe2Si H 4a Ac 5aa 88
2 2b 4a A 5ba 66
3 2c 4a A 5ca 81
4 2d 4a Ac,d 5da 61
5 2e 4a A 5ea 68
6 2f 4a Ad 5fa 88
7 2g 4a Ae 5ga 74
8 2a tBuMe2Si Me 4b B 5ab 92 (100:0)
9 2d 4b B 5db 83 (89:11)
10 2a Me3Si Me 4c B 5ac 92 (100:0)
11 2d 4c B 5dc 68 (95:5)
12 2e 4c B 5ec 46 (96:4)
13 2f 4c B 5fc 91 (96:4)
14 2g 4c Bf 5gc 46 (100:0)
15 2a Me2PhSi Me 4d B 5ad 93 (100:0)
16 2f 4d C 5fd 84 (94:6)
17 2f Me3Si nBu 4e Cg 5fe 92 (100:0)

a Conditions A: 5 mol % Pd(OAc)2, 20 mol % P(p-tol)3, 1.44 equiv
Cs2CO3, reflux, 4-15 h. Conditions B: 5 mol % Pd(OAc)2, 20 mol %
PPh3, 1.20 equiv Cs2CO3, reflux, 4-7 h. Conditions C: 2.5 mol %
Pd(OAc)2, 10 mol % PPh3, 1.20 equiv Cs2CO3, reflux, 45 min.b E/Z Ratios
of 5 are in parentheses.c PPh3 was used instead of P(p-tol)3. d Reaction
run using 2.5 mol % of Pd(OAc)2 and 10 mol % of the ligand.e P(cHex)Ph2
(10 mol %) was used.f P(tBu)3 (5 mol %) was used instead.g The reaction
time was 5 h.

Scheme 2

Table 3. Chirality Transfer from Optically Active (S)-4d to
(E)-1-Aryl-2-butenylsilanes

entry 2 yield of 5 (%) ee of 6 (%)

1 2a 5ad, 92 6ad, 96
2 2b 5bd, 97 6bd, 96
3 2-PhC6H4Br (2h) 5hd, 94 6hd, 94
4 5id, 90 6id, 96

5 5jd, 87 6jd, 95

Scheme 3

Scheme 4
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